Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Hierarchical approach for multiscale support vector regression

Articolo
Data di Pubblicazione:
2012
Citazione:
Hierarchical approach for multiscale support vector regression / F. Bellocchio, S. Ferrari, V. Piuri, N.A. Borghese. - In: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS. - ISSN 2162-237X. - 23:9(2012), pp. 1448-1460. [10.1109/TNNLS.2012.2205018]
Abstract:
Support vector regression (SVR) is based on a linear combination of displaced replicas of the same function, called a kernel. When the function to be approximated is nonstationary, the single kernel approach may be ineffective, as it is not able to follow the variations in the frequency content in the different regions of the input space. The hierarchical support vector regression (HSVR) model presented here aims to provide a good solution also in these cases. HSVR consists of a set of hierarchical layers, each containing a standard SVR with Gaussian kernel at a given scale. Decreasing the scale layer by layer, details are incorporated inside the regression function. HSVR has been widely applied to noisy synthetic and real datasets and it has shown the ability in denoising the original data, obtaining an effective multiscale reconstruction of better quality than that obtained by standard SVR. Results also compare favorably with multikernel approaches. Furthermore, tuning the SVR configuration parameters is strongly simplified in the HSVR model.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
multiple kernels; multiscale regression; support vector machine (SVM); support vector regression (SVR)
Elenco autori:
F. Bellocchio, S. Ferrari, V. Piuri, N.A. Borghese
Autori di Ateneo:
BORGHESE NUNZIO ALBERTO ( autore )
FERRARI STEFANO ( autore )
PIURI VINCENZO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/203379
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0