Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Fair Online Bilateral Trade

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
Fair Online Bilateral Trade / F. Bachoc, N. Cesa Bianchi, T. Cesari, R. Colomboni (ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS). - In: Advances in Neural Information Processing Systems / [a cura di] A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang. - [s.l] : Curran Associates, Inc., 2024. - ISBN 9798331314385. - pp. 37241-37263 (( Intervento presentato al 38. convegno Annual Conference on Neural Information Processing Systems tenutosi a Vancouver nel 2024.
Abstract:
n online bilateral trade, a platform posts prices to incoming pairs of buyers and sellers that have private valuations for a certain good. If the price is lower than the buyers' valuation and higher than the sellers' valuation, then a trade takes place. Previous work focused on the platform perspective, with the goal of setting prices maximizing the *gain from trade* (the sum of sellers' and buyers' utilities). Gain from trade is, however, potentially unfair to traders, as they may receive highly uneven shares of the total utility. In this work we enforce fairness by rewarding the platform with the _fair gain from trade_, defined as the minimum between sellers' and buyers' utilities.After showing that any no-regret learning algorithm designed to maximize the sum of the utilities may fail badly with fair gain from trade, we present our main contribution: a complete characterization of the regret regimes for fair gain from trade when, after each interaction, the platform only learns whether each trader accepted the current price. Specifically, we prove the following regret bounds: Θ(lnT) in the deterministic setting, Ω(T) in the stochastic setting, and ~Θ(T2/3) in the stochastic setting when sellers' and buyers' valuations are independent of each other. We conclude by providing tight regret bounds when, after each interaction, the platform is allowed to observe the true traders' valuations.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
F. Bachoc, N. Cesa Bianchi, T. Cesari, R. Colomboni
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1157680
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1157680/2776271/NeurIPS-2024-fair-online-bilateral-trade-Paper-Conference.pdf
Titolo del libro:
Advances in Neural Information Processing Systems
Progetto:
Learning in Markets and Society
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0