Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Deep learning algorithm on H&E whole slide images to characterize TP53 alterations frequency and spatial distribution in breast cancer

Articolo
Data di Pubblicazione:
2024
Citazione:
Deep learning algorithm on H&E whole slide images to characterize TP53 alterations frequency and spatial distribution in breast cancer / C. Frascarelli, K. Venetis, A. Marra, E. Mane, M. Ivanova, G. Cursano, F.M. Porta, A. Concardi, A.G.M. Ceol, A. Farina, C. Criscitiello, G. Curigliano, E. Guerini-Rocco, N. Fusco. - In: COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL. - ISSN 2001-0370. - 23:(2024), pp. 4252-4259. [10.1016/j.csbj.2024.11.037]
Abstract:
The tumor suppressor TP53 is frequently mutated in hormone receptor-negative, HER2-positive breast cancer (BC), contributing to tumor aggressiveness. Traditional ancillary methods like immunohistochemistry (IHC) to assess TP53 functionality face pre- and post-analytical challenges. This proof-of-concept study employed a deep learning (DL) algorithm to predict TP53 mutational status from H&E-stained whole slide images (WSIs) of BC tissue. Using a pre-trained convolutional neural network, the model identified tumor areas and predicted TP53 mutations with a Dice coefficient score of 0.82. Predictions were validated through IHC and next-generation sequencing (NGS), confirming TP53 aberrant expression in 92 % of the tumor area, closely matching IHC findings (90 %). The DL model exhibited high accuracy in tissue quantification and TP53 status prediction, outperforming traditional methods in terms of precision and efficiency. DL-based approaches offer significant promise for enhancing biomarker testing and precision oncology by reducing intra- and inter-observer variability, but further validation is required to optimize their integration into real-world clinical workflows. This study underscores the potential of DL algorithms to predict key genetic alterations, such as TP53 mutations, in BC. DL-based histopathological analysis represents a valuable tool for improving patient management and tailoring treatment approaches based on molecular biomarker status.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Artificial intelligence; Breast cancer; Deep learning; TP53
Elenco autori:
C. Frascarelli, K. Venetis, A. Marra, E. Mane, M. Ivanova, G. Cursano, F.M. Porta, A. Concardi, A.G.M. Ceol, A. Farina, C. Criscitiello, G. Curigliano, E. Guerini-Rocco, N. Fusco
Autori di Ateneo:
CURIGLIANO GIUSEPPE ( autore )
FRASCARELLI CHIARA ( autore )
FUSCO NICOLA ( autore )
GUERINI ROCCO ELENA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1138055
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1138055/2644010/1-s2.0-S2001037024004057-main.pdf
Progetto:
Adaptive AI methods for Digital Health (AIDH)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MEDS-09/A - Oncologia medica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0