Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Chemical Reaction Enhanced Graph Learning for Molecule Representation

Articolo
Data di Pubblicazione:
2024
Citazione:
Chemical Reaction Enhanced Graph Learning for Molecule Representation / A. Li, E. Casiraghi, J. Rousu. - In: BIOINFORMATICS. - ISSN 1367-4811. - (2024), pp. btae558.1-btae558.15. [Epub ahead of print] [10.1093/bioinformatics/btae558]
Abstract:
Motivation: Molecular representation learning (MRL) models molecules with low-dimensional vectors to support biological and chemical applications. Current methods primarily rely on intrinsic molecular information to learn molecular representations, but they often overlook effectively integrating domain knowledge into MRL. Results: In this paper, we develop a reaction-enhanced graph learning (RXGL) framework for MRL, utilizing chemical reactions as domain knowledge. RXGL introduces dual graph learning modules to model molecule representation. One module employs graph convolutions on molecular graphs to capture molecule structures. The other module constructs a reaction-aware graph from chemical reactions and designs a novel graph attention network on this graph to integrate reaction-level relations into molecular modeling. To refine molecule representations, we design a reaction-based relation learning task, which considers the relations between the reactant and product sides in reactions. In addition, we introduce a cross-view contrastive task to strengthen the cooperative associations between molecular and reaction-aware graph learning. Experiment results show that our RXGL achieves strong performance in various downstream tasks, including product prediction, reaction classification, and molecular property prediction.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
A. Li, E. Casiraghi, J. Rousu
Autori di Ateneo:
CASIRAGHI ELENA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1100788
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1100788/2538193/Bioinformatics_Anchen_btae558.pdf
Progetto:
Adaptive AI methods for Digital Health (AIDH)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore IBIO-01/A - Bioingegneria

Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0