Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the different ability of cross-sample entropy and k-nearest-neighbor cross-unpredictability in assessing dynamic cardiorespiratory and cerebrovascular interactions

Articolo
Data di Pubblicazione:
2023
Citazione:
On the different ability of cross-sample entropy and k-nearest-neighbor cross-unpredictability in assessing dynamic cardiorespiratory and cerebrovascular interactions / A. Porta, V. Bari, F. Gelpi, B. Cairo, B. De Maria, D. Tonon, G. Rossato, L. Faes. - In: ENTROPY. - ISSN 1099-4300. - 25:4(2023), pp. 599.1-599.16. [10.3390/e25040599]
Abstract:
Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods for the assessment of dynamic HP–R and MCBv–MAP interactions, namely the cross-sample entropy (CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional linear causal, and lag-zero linear noncausal models, and then over experimental data acquired from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15, and 20 breaths·minute−1 as well as from 13 subjects at supine rest and during 60◦ head-up tilt. Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal structure, while performances are similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
model-free time series analysis; causality; coupling strength; cardiac control; cerebral autoregulation; heart rate variability; blood flow; arterial pressure; autonomic nervous system; controlled breathing; head-up tilt
Elenco autori:
A. Porta, V. Bari, F. Gelpi, B. Cairo, B. De Maria, D. Tonon, G. Rossato, L. Faes
Autori di Ateneo:
BARI VLASTA ( autore )
CAIRO BEATRICE ( autore )
PORTA ALBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/970489
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/970489/2202098/Porta_E_2023.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0