Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Predicting the failure of two-dimensional silica glasses

Articolo
Data di Pubblicazione:
2022
Citazione:
Predicting the failure of two-dimensional silica glasses / F. FONT CLOS, M. Zanchi, S. Hiemer, S. Bonfanti, R. Guerra, M. Zaiser, S. Zapperi. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 13:1(2022 May 20), pp. 2820.1-2820.11. [10.1038/s41467-022-30530-1]
Abstract:
The sheer number of parameters in deep learning makes the physical interpretation of failure predictions in glasses challenging. Here the authors use Grad-CAM to reveal the role of topological defects and local potential energies in failure predictions.Being able to predict the failure of materials based on structural information is a fundamental issue with enormous practical and industrial relevance for the monitoring of devices and components. Thanks to recent advances in deep learning, accurate failure predictions are becoming possible even for strongly disordered solids, but the sheer number of parameters used in the process renders a physical interpretation of the results impossible. Here we address this issue and use machine learning methods to predict the failure of simulated two dimensional silica glasses from their initial undeformed structure. We then exploit Gradient-weighted Class Activation Mapping (Grad-CAM) to build attention maps associated with the predictions, and we demonstrate that these maps are amenable to physical interpretation in terms of topological defects and local potential energies. We show that our predictions can be transferred to samples with different shape or size than those used in training, as well as to experimental images. Our strategy illustrates how artificial neural networks trained with numerical simulation results can provide interpretable predictions of the behavior of experimentally measured structures.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
F. FONT CLOS, M. Zanchi, S. Hiemer, S. Bonfanti, R. Guerra, M. Zaiser, S. Zapperi
Autori di Ateneo:
GUERRA ROBERTO ( autore )
ZAPPERI STEFANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/941009
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/941009/2078783/Font-Clos-Ncomms2022.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/03 - Fisica della Materia
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0