Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Predicting non-responders to lifestyle intervention in prediabetes: a machine learning approach

Articolo
Data di Pubblicazione:
2024
Citazione:
Predicting non-responders to lifestyle intervention in prediabetes: a machine learning approach / A. Foppiani, R. De Amicis, A. Leone, F. Sileo, S.P. Mambrini, F. Menichetti, G. Pozzi, S. Bertoli, A. Battezzati. - In: EUROPEAN JOURNAL OF CLINICAL NUTRITION. - ISSN 0954-3007. - (2024), pp. 1-6. [10.1038/s41430-024-01495-9]
Abstract:
Background: The clinical care process for people with prediabetes starts with lifestyle intervention, often escalating to more intense treatment due to the low success rate of the first-line intervention. Clinicians lack clear guidelines on which patients would benefit from early treatment with more intensive therapeutic options, so we aimed to develop an algorithm to early identify non-responders to lifestyle intervention for prediabetes. Method: Several statistical and machine learning algorithms were screened with internal cross-validation on the basis of accuracy and discrimination ability to correctly classify patients that would fail to normalize fasting glycemia within one year of being prescribed a lifestyle intervention, solely based on the first examination measurements. Result: Of the many screened algorithm, only a random forest model performed with sufficient accuracy to exceed the historical failure rate of patients within our center, with an accuracy of 0.689 (CI 0.669, 0.710) and an AUROC of 0.687 (CI 0.673, 0.701). Conclusions: This study showcases the ability of machine learning models to provide useful insight in clinical practice leveraging knowledge contained in routinely collected data.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
A. Foppiani, R. De Amicis, A. Leone, F. Sileo, S.P. Mambrini, F. Menichetti, G. Pozzi, S. Bertoli, A. Battezzati
Autori di Ateneo:
BATTEZZATI ALBERTO ( autore )
BERTOLI SIMONA ( autore )
DE AMICIS RAMONA SILVANA ( autore )
FOPPIANI ANDREA ( autore )
LEONE ALESSANDRO ( autore )
MENICHETTI FRANCESCA ( autore )
SILEO FEDERICA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1115245
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1115245/2577201/s41430-024-01495-9.pdf
Progetto:
ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security – Working ON Foods
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore BIOS-06/A - Fisiologia

Settore MEDS-08/C - Scienza dell'alimentazione e delle tecniche dietetiche applicate
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0