Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Attività

Hamiltonian Dynamics, Normal forms and Water Waves (HamDyWWa)

Progetto
KAM and normal form methods are very powerful tools for analyzing the dynamics of nearly integrable finite dimensional Hamiltoniansystems. In the last decades, the extension of these methods to infinite dimensional systems, like Hamiltonian PDEs (partial differentialequations), has attracted the interest of many outstanding mathematicians like Bourgain, Craig, Kuksin, Wayne and many others. Thesetechniques provide some tools for describing the phase space of nearly integrable PDEs. More precisely they give a way to constructspecial global solutions (like periodic and quasi-periodic solutions) and to analyze stability issues close to equilibria or close to specialsolutions (like solitons). In the last seven years, I developed new methods for proving the existence of quasi-periodic solutions of quasi-linear, one-dimensional PDEs. This is an important step towards treating many of the fundamental equations from physics since mostof these equations are quasi-linear. In particular, this is the case for the equations in fluid dynamics, the water waves equation being aprominent example. These novel techniques are based on a combination of pseudo-differential and para-differential calculus, with theclassical perturbative techniques and they allowed to make significant advances of the KAM and normal form theory for one-dimensionalPDEs. On the other hand, many challenging problems remain open and the purpose of this proposal is to investigate some of them. Themain goal of this project is to develop KAM and normal form methods for PDEs in higher space dimension, with a particular focus onequations arising from fluid dynamics, like Euler, Navier-Stokes and water waves equations. By extending the novel approach, developedfor PDEs in one space dimension, I have already obtained some preliminary results on PDEs in higher space dimension (like the Eulerequation in 3d), which makes me confident that the proposed project is feasible.
  • Dati Generali
  • Aree Di Ricerca
  • Pubblicazioni

Dati Generali

Partecipanti

MONTALTO RICCARDO   Responsabile scientifico  

Dipartimenti coinvolti

Dipartimento di Matematica Federigo Enriques   Principale  

Tipo

Horizon Europe - European Research Council (ERC)

Finanziatore

EUROPEAN COMMISSION
Organizzazione Esterna Ente Finanziatore

Periodo di attività

Marzo 1, 2022 - Febbraio 28, 2027

Durata progetto

60 mesi

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica

Parole chiave (3)

Analysis
Mathematical physics
Theoretical aspects of partial differential equations
No Results Found

Pubblicazioni

Pubblicazioni (5)

Large Amplitude Quasi-Periodic Traveling Waves in Two Dimensional Forced Rotating Fluids 
COMMUNICATIONS IN MATHEMATICAL PHYSICS
SPRINGER
2025
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
A KAM Approach to the Inviscid Limit for the 2D Navier–Stokes Equations 
ANNALES HENRI POINCARÉ
SPRINGER
2024
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Almost Global Existence for Some Hamiltonian PDEs with Small Cauchy Data on General Tori 
COMMUNICATIONS IN MATHEMATICAL PHYSICS
SPRINGER
2024
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow 
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
SPRINGER NATURE
2024
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Time almost-periodic solutions of the incompressible Euler equations 
MATHEMATICS IN ENGINEERING
AIMS PRESS
2024
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0