Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Cosmological inference from galaxy-clustering power spectrum: Gaussianization and covariance decomposition

Articolo
Data di Pubblicazione:
2019
Citazione:
Cosmological inference from galaxy-clustering power spectrum: Gaussianization and covariance decomposition / M.K. Wang, W.J. Percival, S. Avila, R. Crittenden, D. Bianchi. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 486:1(2019 Jun), pp. 951-965. [10.1093/mnras/stz829]
Abstract:
Likelihood fitting to two-point clustering statistics made from galaxy surveys usually assumes a multivariate normal distribution for the measurements, with justification based on the central limit theorem given the large number of overdensity modes. However, this assumption cannot hold on the largest scales where the number of modes is low. Whilst more accurate distributions have previously been developed in idealized cases, we derive a procedure suitable for analysing measured monopole power spectra with window effects, stochastic shot noise, and the dependence of the covariance matrix on the model being fitted all taken into account. A data transformation is proposed to give an approximately Gaussian likelihood, with a variance-correlation decomposition of the covariance matrix to account for its cosmological dependence. By comparing with the modified-t likelihood derived under the usual normality assumption, we find in numerical tests that our new procedure gives more accurate constraints on the local non-Gaussianity parameter fNL, which is sensitive to the large-scale power. A simple data analysis pipeline is provided for straightforward application of this new approach in preparation for forthcoming large galaxy surveys such as DESI and Euclid.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
large-scale structure of Universe; methods: data analysis; methods: statistical
Elenco autori:
M.K. Wang, W.J. Percival, S. Avila, R. Crittenden, D. Bianchi
Autori di Ateneo:
BIANCHI DAVIDE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/881651
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/05 - Astronomia e Astrofisica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0