Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Lie-Poincare' transformations and a reduction criterion in Landau theory

Articolo
Data di Pubblicazione:
2004
Citazione:
Lie-Poincare' transformations and a reduction criterion in Landau theory / G. Gaeta. - In: ANNALS OF PHYSICS. - ISSN 0003-4916. - 312:2(2004 Aug), pp. 511-540.
Abstract:
In the Landau theory of phase transitions one considers an effective potential U whose symmetry group G and degree d depend on the system under consideration; generally speaking, U is the most general G-invariant polynomial of degree d. When such a U turns out to be too complicate for a direct analysis, it is essential to be able to drop unessential terms, i.e., to apply a simplifying criterion. Criteria based on singularity theory exist and have a rigorous foundation, but are often very difficult to apply in practice. Here we consider a simplifying criterion (as stated by Gufan) and rigorously justify it on the basis of classical Lie-Poincaré theory as far as one deals with fixed values of the control parameter(s) in the Landau potential; when one considers a range of values, in particular near a phase transition, the criterion has to be accordingly partially modified, as we discuss. We consider some specific cases of group G as examples, and study in detail the application to the Sergienko–Gufan–Urazhdin model for highly piezoelectric perovskites.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Landau theory; Normal forms; Phase transitions; Singularity theory
Elenco autori:
G. Gaeta
Autori di Ateneo:
GAETA GIUSEPPE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/68902
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0