Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

MetaClass, a comprehensive classification system for predicting the occurrence of metabolic reactions based on the MetaQSAR database

Articolo
Data di Pubblicazione:
2021
Citazione:
MetaClass, a comprehensive classification system for predicting the occurrence of metabolic reactions based on the MetaQSAR database / A. Mazzolari, A. Scaccabarozzi, G. Vistoli, A. Pedretti. - In: MOLECULES. - ISSN 1420-3049. - 26:19(2021 Sep 27), pp. 5857.1-5857.17. [10.3390/molecules26195857]
Abstract:
(1) Background: Machine learning algorithms are finding fruitful applications in predicting the ADME profile of new molecules, with a particular focus on metabolism predictions. How-ever, the development of comprehensive metabolism predictors is hampered by the lack of highly accurate metabolic resources. Hence, we recently proposed a manually curated metabolic database (MetaQSAR), the level of accuracy of which is well suited to the development of predictive models. (2) Methods: MetaQSAR was used to extract datasets to predict the metabolic reactions subdivided into major classes, classes and subclasses. The collected datasets comprised a total of 3788 first-gen-eration metabolic reactions. Predictive models were developed by using standard random forest algorithms and sets of physicochemical, stereo-electronic and constitutional descriptors. (3) Results: The developed models showed satisfactory performance, especially for hydrolyses and conjuga-tions, while redox reactions were predicted with greater difficulty, which was reasonable as they depend on many complex features that are not properly encoded by the included descriptors. (4) Conclusions: The generated models allowed a precise comparison of the propensity of each metabolic reaction to be predicted and the factors affecting their predictability were discussed in detail. Overall, the study led to the development of a freely downloadable global predictor, MetaClass, which correctly predicts 80% of the reported reactions, as assessed by an explorative validation analysis on an external dataset, with an overall MCC = 0.44.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
classification algorithms; drug metabolism; metabolic reactions; metabolism prediction; MetaQSAR; random forest
Elenco autori:
A. Mazzolari, A. Scaccabarozzi, G. Vistoli, A. Pedretti
Autori di Ateneo:
MAZZOLARI ANGELICA ( autore )
PEDRETTI ALESSANDRO ( autore )
VISTOLI GIULIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/875862
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/875862/1891380/molecules-26-05857-v2%20(1).pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore CHIM/08 - Chimica Farmaceutica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0