Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Iris deidentification with high visual realism for privacy protection on websites and social networks

Articolo
Data di Pubblicazione:
2021
Citazione:
Iris deidentification with high visual realism for privacy protection on websites and social networks / M. Barni, R. Donida Labati, A. Genovese, V. Piuri, F. Scotti. - In: IEEE ACCESS. - ISSN 2169-3536. - 9(2021 Sep 22), pp. 131995-132010. [10.1109/ACCESS.2021.3114588]
Abstract:
The very high recognition accuracy of iris-based biometric systems and the increasing distribution of high-resolution personal images on websites and social media are creating privacy risks that users and the biometric community have not yet addressed properly. Biometric information contained in the iris region can be used to automatically recognize individuals even after several years, potentially enabling pervasive identification, recognition, and tracking of individuals without explicit consent. To address this issue, this paper presents two main contributions. First, we demonstrate, through practical examples, that the risk associated with iris-based identification by means of images collected from public websites and social media is real. Second, we propose an innovative method based on generative adversarial networks (GANs) that can automatically generate novel images with high visual realism, in which all the biometric information associated with an individual in the iris region has been removed and replaced. We tested the proposed method on an image dataset composed of high-resolution portrait images collected from the web. The results show that the generated deidentified images significantly reduce the privacy risks and, in most cases, are indistinguishable from real samples.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Biometrics; Deidentification; GAN; Iris; Privacy
Elenco autori:
M. Barni, R. Donida Labati, A. Genovese, V. Piuri, F. Scotti
Autori di Ateneo:
DONIDA LABATI RUGGERO ( autore )
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/869241
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/869241/1874116/access21.pdf
Progetto:
Multi-Owner data Sharing for Analytics and Integration respecting Confidentiality and Owner control (MOSAICrOWN)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0