Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations

Articolo
Data di Pubblicazione:
1999
Citazione:
Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations / D. Bambusi. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 230:2(1999 Feb), pp. 345-387.
Abstract:
We prove a Nekhoroshev type result [26,27] for the nonlinear Schrödinger equation iut = -uxx - mu - uφ(\u\2) , (0.1) with vanishing or periodic boundary conditions on [0, π]; here m ∈ ℝ is a parameter and φ : ℝ → ℝ, is a function analytic in a neighborhood of the origin and such that φ(0) = 0, φ′(0) ≠ 0. More precisely, we consider the Cauchy problem for (0.1 ) with initial data which extend to analytic entire functions of finite order, and prove that all the actions of the linearized system are approximate constants of motion up to times growing faster than any negative power of the size of the initial datum. The proof is obtained by a method which applies to Hamiltonian perturbations of linear PDE's with the following properties: (i) the linear dynamics is periodic (ii) there exists a finite order Birkhoff normal form which is integrable and quasi convex as a function of the action variables. Eq. (0.1) satisfies (i) and (ii) when restricted to a level surface of \\u\\L2, which is an integral of motion. The main technical tool used in the proof is a normal form lemma for systems with symmetry which is also proved here.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
D. Bambusi
Autori di Ateneo:
BAMBUSI DARIO PAOLO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/68493
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0