Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Korteweg–de Vries and Fermi–Pasta–Ulam–Tsingou: asymptotic integrability of quasi unidirectional waves

Articolo
Data di Pubblicazione:
2021
Citazione:
Korteweg–de Vries and Fermi–Pasta–Ulam–Tsingou: asymptotic integrability of quasi unidirectional waves / M. Gallone, A. Ponno, B. Rink. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 54:30(2021), pp. 305701.1-305701.29. [10.1088/1751-8121/ac0a2e]
Abstract:
In this paper we construct a higher order expansion of the manifold of quasi unidirectional waves in the Fermi–Pasta–Ulam–Tsingou (FPUT) chain. We also approximate the dynamics on this manifold. As perturbation parameter we use h2 = 1/n2, where n is the number of particles of the chain. It is well known that the dynamics of quasi unidirectional waves is described to first order by the Korteweg–de Vries (KdV) equation. Here we show that the dynamics to second order is governed by a combination of the first two nontrivial equations in the KdV hierarchy—for any choice of parameters in the FPUT potential. On the other hand, we find that only if the parameters of the FPUT potential satisfy a condition, then a combination of the first three nontrivial equations in the KdV hierarchy determines the dynamics of quasi unidirectional waves to third order. The required condition is satisfied by the Toda chain. Our results suggest why the close-to-integrable behavior of the FPUT chain (the FPUT paradox) persists on a time scale longer than explained by the KdV approximation, and also how a breakdown of integrability (detachment from the KdV hierarchy) may be responsible for the eventual thermalization of the system.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Fermi–Pasta–Ulam–Tsingou; Korteweg–de Vries; Near-integra bility; Normal forms
Elenco autori:
M. Gallone, A. Ponno, B. Rink
Autori di Ateneo:
GALLONE MATTEO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/863207
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/863207/1880656/2010.03520.pdf
Progetto:
Mathematical Quantum Matter
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici

Settore FIS/03 - Fisica della Materia

Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0