Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A Hodge theoretic projective structure on Riemann surfaces

Articolo
Data di Pubblicazione:
2021
Citazione:
A Hodge theoretic projective structure on Riemann surfaces / I. Biswas, E. Colombo, P. Frediani, G.P. Pirola. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 1776-3371. - 149:(2021 May), pp. 1-27. [10.1016/j.matpur.2021.02.005]
Abstract:
Given any compact Riemann surface C, there is a canonical meromorphic 2-form (eta) over cap on C x C, with pole of order two on the diagonal Delta subset of C x C, constructed in [4]. This meromorphic 2-form (eta) over cap produces a canonical projective structure on C. On the other hand the uniformization theorem provides another canonical projective structure on any compact Riemann surface C. We prove that these two projective structures differ in general. This is done by comparing the (0, 1)-component of the differential of the corresponding sections of the moduli space of projective structures over the moduli space of curves. The (0, 1)-component of the differential of the section corresponding to the projective structure given by the uniformization theorem was computed by Zograf and Takhtadzhyan in [16] as the Weil-Petersson Kahler form omega(wp) on the moduli space of curves. We prove that the (0, 1)-component of the differential of the section of the moduli space of projective structures corresponding to (eta) over cap is the pullback of a nonzero constant scalar multiple of the Siegel form, on the moduli space of principally polarized abelian varieties, by the Torelli map.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Projective structure; Moduli space; Weil-Petersson form; Siegel form;
Elenco autori:
I. Biswas, E. Colombo, P. Frediani, G.P. Pirola
Autori di Ateneo:
COLOMBO ELISABETTA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/860489
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/860489/2681863/191208595v2_250206_185049.pdf
Progetto:
Moduli and Lie Theory
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/03 - Geometria

Settore MATH-02/B - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0