Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Area minimizing hypersurfaces modulo $p$: a geometric free-boundary problem

Articolo
Data di Pubblicazione:
2021
Citazione:
Area minimizing hypersurfaces modulo $p$: a geometric free-boundary problem / C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, S. Stuvard. - (2021 May 17).
Abstract:
We consider area minimizing m-dimensional currents mod(p) in complete C^2 Riemannian manifolds $Sigma$ of dimension m+1. For odd moduli we prove that, away from a closed rectifiable set of codimension 2, the current in question is, locally, the union of finitely many smooth minimal hypersurfaces coming together at a common $C^{1,alpha}$ boundary of dimension m-1, and the result is optimal. For even p such structure holds in a neighborhood of any point where at least one tangent cone has (m-1)-dimensional spine. These structural results are indeed the byproduct of a theorem that proves (for any modulus) uniqueness and decay towards such tangent cones. The underlying strategy of the proof is inspired by the techniques developed by Simon in "Cylindrical tangent cones and the singular set of minimal submanifolds" (J. Differential Geometry 1993) in a class of multiplicity one stationary varifolds. The major difficulty in our setting is produced by the fact that the cones and surfaces under investigation have arbitrary multiplicities ranging from 1 to [p/2].
Tipologia IRIS:
24 - Pre-print
Keywords:
Minimal surfaces; Regularity; Tangent cones uniqueness
Elenco autori:
C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, S. Stuvard
Autori di Ateneo:
STUVARD SALVATORE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/850461
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/850461/1822480/2105.08135.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0