Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Towards explainable semantic segmentation for autonomous driving systems by multi-scale variational attention

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
Towards explainable semantic segmentation for autonomous driving systems by multi-scale variational attention / M. Abukmeil, A. Genovese, V. Piuri, F. Rundo, F. Scotti - In: 2021 IEEE International Conference on Autonomous Systems (ICAS)[s.l] : IEEE, 2021. - ISBN 978-1-7281-7289-7. - pp. 1-5 (( Intervento presentato al 1. convegno ICAS 2021 tenutosi a Montreal nel 2021 [10.1109/ICAS49788.2021.9551172].
Abstract:
Explainable autonomous driving systems (EADS) are emerging recently as a combinatory field of explainable artificial intelligence (XAI) and vehicular automation (VA). EADS explains events, ambient environments, and engine operations of an autonomous driving vehicular, and it also delivers explainable results in an orderly manner. Explainable semantic segmentation (ESS) plays an essential role in building EADS, where it offers visual attention that helps the drivers to be aware of the ambient objects irrespective if they are roads, pedestrians, animals, or other objects. In this paper, we propose the first ESS model for EADS based on the variation autoencoder (VAE), and it uses the multiscale first-order derivatives between the latent space and the encoder layers to capture the curvatures of the neurons’ responses. Our model is termed as Mgrad2VAE and is bench-marked on the SYNTHIA dataset, where it outperforms the recent deep models in terms of image segmentation metrics.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Autonomous Driving System; VAE; XAI; ESS
Elenco autori:
M. Abukmeil, A. Genovese, V. Piuri, F. Rundo, F. Scotti
Autori di Ateneo:
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/845430
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/845430/1881120/2021_icas.pdf
Titolo del libro:
2021 IEEE International Conference on Autonomous Systems (ICAS)
Progetto:
Multi-Owner data Sharing for Analytics and Integration respecting Confidentiality and Owner control (MOSAICrOWN)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0