Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Persone

Histopathological Transfer Learning for Acute Lymphoblastic Leukemia Detection

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
Histopathological Transfer Learning for Acute Lymphoblastic Leukemia Detection / A. Genovese, M.S. Hosseini, V. Piuri, K.N. Plataniotis, F. Scotti - In: 2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)[s.l] : IEEE, 2021. - ISBN 9781665412490. - pp. 1-6 (( convegno International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, CIVEMSA 2021 nel 2021 [10.1109/CIVEMSA52099.2021.9493677].
Abstract:
The detection of Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) is being increasingly performed with the help of Computer Aided Diagnosis (CAD) systems based on Deep Learning (DL), which support the pathologists in performing their decision by analyzing the blood samples to determine the presence of lymphoblasts. When using DL, the limited dimensionality of ALL databases favors the use of transfer learning techniques to increase the accuracy in the detection, by considering Convolutional Neural Networks (CNN) pretrained on the general purpose ImageNet database. However, no method in the literature has yet considered the use of CNNs pretrained on histopathology databases to perform transfer learning for ALL detection. In fact, the majority of histopathology databases in the literature has either a small number of samples or limited ground truth labeling possibilities (e.g., only two possible classes), which hinders the effectiveness of training CNNs from scratch. In this paper, we propose the first method based on histopathological transfer learning for ALL detection, which trains a CNN on a histopathology database to classify tissue types, then performs a fine tuning on the ALL database to detect the presence of lymphoblasts. As histopathology database, we consider a multi-label dataset with a significantly higher number of samples and classes with respect to the literature, which enables CNNs to learn general features for histopathology image processing and hence allow to perform a more effective transfer learning, with respect to CNNs pretrained on ImageNet. We evaluate the methodology on a publicly-available ALL database and considering multiple CNNs, with results confirming the validity of our approach.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Deep Learning; CNN; ALL; Transfer Learning; Histopathology;
Elenco autori:
A. Genovese, M.S. Hosseini, V. Piuri, K.N. Plataniotis, F. Scotti
Autori di Ateneo:
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/841139
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/841139/1824495/civemsa21_all.pdf
Titolo del libro:
2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)
Progetto:
Multi-Owner data Sharing for Analytics and Integration respecting Confidentiality and Owner control (MOSAICrOWN)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0