Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

MCNNTUNES: Tuning Shower Monte Carlo generators with machine learning

Articolo
Data di Pubblicazione:
2021
Citazione:
MCNNTUNES: Tuning Shower Monte Carlo generators with machine learning / M. Lazzarin, S. Alioli, S. Carrazza. - In: COMPUTER PHYSICS COMMUNICATIONS. - ISSN 0010-4655. - 263(2021 Jun), pp. 107908.1-107908.7.
Abstract:
The parameters tuning of event generators is a research topic characterized by complex choices: the generator response to parameter variations is difficult to obtain on a theoretical basis, and numerical methods are hardly tractable due to the long computational times required by generators. Event generator tuning has been tackled by parametrization-based techniques, with the most successful one being a polynomial parametrization. In this work, an implementation of tuning procedures based on artificial neural networks is proposed. The implementation was tested with closure testing and experimental measurements from the ATLAS experiment at the Large Hadron Collider. Program summary: Program Title: MCNNTUNES CPC Library link to program files: https://doi.org/10.17632/dmkydsxgd3.1 Developer's repository link: https://github.com/N3PDF/mcnntunes Licensing provisions: GPLv3 Programming language: Python Nature of problem: Shower Monte Carlo generators introduce many parameters that must be tuned to reproduce the experimental measurements. The dependence of the generator output on these parameters is difficult to obtain on a theoretical basis. Solution method: Implementation of a tuning method using supervised machine learning algorithms based on neural networks, which are universal approximators.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Event generator tuning; Machine learning
Elenco autori:
M. Lazzarin, S. Alioli, S. Carrazza
Autori di Ateneo:
CARRAZZA STEFANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/816902
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/816902/1710704/2010.02213.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0