Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the geometry of Einstein-type structures

Articolo
Data di Pubblicazione:
2021
Citazione:
On the geometry of Einstein-type structures / A. Anselli, G. Colombo, M. Rigoli. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 204(2021 Mar), pp. 112198.1-112198.84.
Abstract:
The aim of the paper is to study the geometry of a Riemannian manifold M, with a special structure depending on 3 real parameters, a smooth map φ into a target Riemannian manifold N, and a smooth function f on M itself. We will occasionally let some of the parameters be smooth functions. For a special value of one of them, the structure is obtained by a conformal deformation of a harmonic-Einstein manifold. The setting generalizes various previously studied situations; for instance, Ricci solitons, Ricci harmonic solitons, generalized quasi-Einstein manifolds and so on. One main ingredient of our analysis is the study of certain modified curvature tensors on M, related to the map φ, and to develop a series of results for harmonic-Einstein manifolds that parallel those obtained for Einstein manifolds both some time ago and in the very recent literature. We then turn to locally characterize, via a couple of integrability conditions and mild assumptions on f, the manifold M as a warped product with harmonic-Einstein fibers extending in a very non trivial way a recent result for Ricci solitons. We then consider rigidity and non existence, both in the compact and non-compact cases. This is done via integral formulas and, in the non-compact case, via analytical tools previously introduced by the authors.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Codazzi tensors; Conformally harmonic-Einstein manifolds; Curvature restrictions; Harmonic-Einstein manifolds; Integrability conditions; Non-existence results; Rigidity results; Uniqueness results; Volume estimates; Warped products; Weak maximum principle; φ-curvatures
Elenco autori:
A. Anselli, G. Colombo, M. Rigoli
Autori di Ateneo:
COLOMBO GIULIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/802388
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0