Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A construction of Frobenius manifolds from stability conditions

Articolo
Data di Pubblicazione:
2019
Citazione:
A construction of Frobenius manifolds from stability conditions / A. Barbieri, T. Sutherland, J. Stoppa. - In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6115. - 118:6(2019 Jun), pp. 1328-1366. [10.1112/plms.12217]
Abstract:
A finite quiver Q without loops or 2-cycles defines a CY3 triangulated category D(Q) and a finite heart A(Q)subset of D(Q). We show that if Q satisfies some (strong) conditions, then the space of stability conditions Stab(A(Q)) supported on this heart admits a natural family of semisimple Frobenius manifold structures, constructed using the invariants counting semistable objects in D(Q). In the case of An evaluating the family at a special point, we recover a branch of the Saito Frobenius structure of the An singularity y2=xn+1. We give examples where applying the construction to each mutation of Q and evaluating the families at a special point yields a different branch of the maximal analytic continuation of the same semisimple Frobenius manifold. In particular, we check that this holds in the case of An, n <= 5.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
A. Barbieri, T. Sutherland, J. Stoppa
Link alla scheda completa:
https://air.unimi.it/handle/2434/791165
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/791165/1634906/1612.06295.pdf
https://air.unimi.it/retrieve/handle/2434/791165/1693493/plms.12217.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0