Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Positive eigenvectors and simple nonlinear maps

Articolo
Data di Pubblicazione:
2021
Citazione:
Positive eigenvectors and simple nonlinear maps / M. Calanchi, C. Tomei. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 280:7(2021 Apr 01), pp. 108823.1-108823.35. [10.1016/j.jfa.2020.108823]
Abstract:
For linear operators L,T and nonlinear maps P, we describe classes of simple maps F = I −PT, F = L−P between Banach and Hilbert spaces, for which no point has more than two preimages. The classes encompass known examples (homeomorphisms, global folds) and the weaker, geometric, hypotheses suggest new ones. The operator L may be the Laplacian with various boundary conditions, as in the original Ambrosetti-Prodi the- orem, or the operators associated with the quantum harmonic oscillator, the hydrogen atom, a spectral fractional Laplacian, elliptic operators in non-divergent form. The maps P include the Nemitskii map P(u) = f(u) but may be non-local, even non-variational. For self-adjoint operators L, we employ familiar results on the nondegeneracy of the ground state. On Banach spaces, we use a variation of the Krein-Rutman theorem.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Ambrosetti-Prodi theorem; folds; Krein-Rutman theorem; positivity preserving semigroups;
Elenco autori:
M. Calanchi, C. Tomei
Autori di Ateneo:
CALANCHI MARTA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/778286
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/778286/2673929/1-s2.0-S0022123620303669-main(5).pdf
https://air.unimi.it/retrieve/handle/2434/778286/2673945/Calanchi_Tomei_JFA_rev1(2).pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/05 - Analisi Matematica

Settore MATH-03/A - Analisi matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0