Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

KdV and FPU: asymptotic integrability of quasi unidirectional waves

Articolo
Data di Pubblicazione:
2020
Citazione:
KdV and FPU: asymptotic integrability of quasi unidirectional waves / M. Gallone, A. Ponno, B. Rink. - (2020 Oct 07).
Abstract:
In this paper we construct a higher order expansion of the manifold of quasi unidirectional waves in the Fermi-Pasta-Ulam (FPU) chain. We also approximate the dynamics on this manifold. As perturbation parameter we use $h^2=1/n^2$, where $n$ is the number of particles of the chain. It is well known that the dynamics of quasi unidirectional waves is described to first order by the Korteweg-de Vries (KdV) equation. Here we show that the dynamics to second order is governed by a combination of the first two nontrivial equations in the KdV hierarchy -- for any choice of parameters in the FPU potential. On the other hand, we find that only if the parameters of the FPU potential satisfy a condition, then a combination of the first three nontrivial equations in the KdV hierarchy determines the dynamics of quasi unidirectional waves to third order. The required condition is satisfied by the Toda chain. Our results suggest why the close-to-integrable behavior of the FPU chain (the FPU paradox) persists on a time scale longer than explained by the KdV approximation, and al so how a breakdown of integrability (detachment from the KdV hierarchy) is responsible for the eventual thermalization of the system.
Tipologia IRIS:
24 - Pre-print
Elenco autori:
M. Gallone, A. Ponno, B. Rink
Autori di Ateneo:
GALLONE MATTEO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/777771
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/777771.2/3153252/Arxiv.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0