Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On cyclic branched coverings of torus knots

Articolo
Data di Pubblicazione:
1999
Citazione:
On cyclic branched coverings of torus knots / A.Cavicchioli, F.Hegenbarth, A.C.Kim. - In: JOURNAL OF GEOMETRY. - ISSN 0047-2468. - 64:1-2(1999), pp. 55-66. [10.1007/BF01229212]
Abstract:
We prove that then-fold cyclic coverings of the 3-sphere branched over the torus knotsK(p,q), p>q2 (i.e. the Brieskorn manifolds in the sense of [12]) admit spines corresponding to cyclic presentations of groups ifp1 (modq). These presentations include as a very particular case the Sieradski groups, first introduced in [14] and successively obtained from geometric constructions in [4], [9], and [15]. So our main theorem answers in affirmative to an open question suggested by the referee in [14]. Then we discuss a question concerning cyclic presentations of groups and Alexander polynomials of knots.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Alexander polynomials; Branched cyclic coverings; Cyclic presentations of groups; Knots; Manifolds; Spines
Elenco autori:
A. Cavicchioli, F. Hegenbarth, A.C. Kim
Link alla scheda completa:
https://air.unimi.it/handle/2434/30655
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0