Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Families of structures on spherical fibrations

Articolo
Data di Pubblicazione:
2001
Citazione:
Families of structures on spherical fibrations / Alberto Cavicchioli, Friedrich Hegenbarth. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - 85:1-3(2001), pp. 85-111.
Abstract:
Let SF(n) be the usual monoid of orientation- and base point-preserving self-equivalences of the n-sphere n. If Y is a (right) SF(n)-space, one can construct a classifying space B(Y, SF(n), *)=B n for n-fibrations with Y-structure, by making use of the two-sided bar construction. Let k: B n BSF(n) be the forgetful map. A Y-structure on a spherical fibration corresponds to a lifting of the classifying map into B n . Let K i =K , i) be the Eilenberg–Mac Lane space of type , i). In this paper we study families of structures on a given spherical fibration. In particular, we construct a universal family of Y-structures, where Y=W n is a space homotopy equivalent to i1 K i . Applying results due to Booth, Heath, Morgan and Piccinini, we prove that the universal family is a spherical fibration over the space map{B n , B n }×B n . Furthermore, we point out the significance of this space for secondary characteristic classes. Finally, we calculate the cohomology of B n .
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
spherical fibrations - Stiefel–Whitney classes - secondary characteristic classes - Steenrod algebra - Thom spaces - weak homotopy type - W-structures - classifying spaces - quasifibrations - cohomology - self-homotopy equivalences - CW-complexes
Elenco autori:
Alberto Cavicchioli, Friedrich Hegenbarth
Link alla scheda completa:
https://air.unimi.it/handle/2434/30708
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0