Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Beyond the Storage Capacity: Data-Driven Satisfiability Transition

Articolo
Data di Pubblicazione:
2020
Citazione:
Beyond the Storage Capacity: Data-Driven Satisfiability Transition / P. Rotondo, M. Pastore, M. Gherardi. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 125:12(2020 Sep 14). [10.1103/PhysRevLett.125.120601]
Abstract:
Data structure has a dramatic impact on the properties of neural networks, yet its significance in the established theoretical frameworks is poorly understood. Here we compute the Vapnik-Chervonenkis entropy of a kernel machine operating on data grouped into equally labeled subsets. At variance with the unstructured scenario, entropy is nonmonotonic in the size of the training set, and displays an additional critical point besides the storage capacity. Remarkably, the same behavior occurs in margin classifiers even with randomly labeled data, as is elucidated by identifying the synaptic volume encoding the transition. These findings reveal aspects of expressivity lying beyond the condensed description provided by the storage capacity, and they indicate the path towards more realistic bounds for the generalization error of neural networks.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
P. Rotondo, M. Pastore, M. Gherardi
Autori di Ateneo:
GHERARDI MARCO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/776164
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0