Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Existence of stable H-surfaces in cones and their representation as radial graphs

Articolo
Data di Pubblicazione:
2016
Citazione:
Existence of stable H-surfaces in cones and their representation as radial graphs / P. Caldiroli, A. Iacopetti. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 55:6(2016 Oct), pp. 131.1-131.21. [10.1007/s00526-016-1074-8]
Abstract:
In this paper we study the Plateau problem for disk-type surfaces contained in conic regions of R3and with prescribed mean curvature H. Assuming a suitable growth condition on H, we prove existence of a least energy H-surface X spanning an arbitrary Jordan curve Γ taken in the cone. Then we address the problem of describing such surface X as radial graph when the Jordan curve Γ admits a radial representation. Assuming a suitable monotonicity condition on the mapping λ↦ λH( λp) and some strong convexity-type condition on the radial projection of the Jordan curve Γ , we show that the H-surface X can be represented as a radial graph.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
35J66; 53A10; 57R40
Elenco autori:
P. Caldiroli, A. Iacopetti
Link alla scheda completa:
https://air.unimi.it/handle/2434/770790
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/770790/1577308/H-surfaces_cones_postprint.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0