Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the structure of the nodal set and asymptotics of least energy sign-changing radial solutions of the fractional Brezis–Nirenberg problem

Articolo
Data di Pubblicazione:
2018
Citazione:
On the structure of the nodal set and asymptotics of least energy sign-changing radial solutions of the fractional Brezis–Nirenberg problem / G. Cora, A. Iacopetti. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 176(2018 Nov), pp. 226-271. [10.1016/j.na.2018.07.001]
Abstract:
In this paper we study the asymptotic and qualitative properties of least energy radial sign- changing solutions of the fractional Brezis–Nirenberg problem ruled by the s-Laplacian, in a ball of R^n, when s ∈ (0,1) and n > 6s. As usual, λ is the (positive) parameter in the linear part in u. We prove that for λ sufficiently small such solutions cannot vanish at the origin, we show that they change sign at most twice and their zeros coincide with the sign-changes. Moreover, when s is close to 1, such solutions change sign exactly once. Finally we prove that least energy nodal solutions which change sign exactly once have the limit profile of a “tower of bubbles”, as λ → 0+, i.e. the positive and negative parts concentrate at the same point with different concentration speeds.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Fractional semilinear elliptic equations, Critical exponent, Nodal regions, Sign-changing radial solutions, Asymptotic behavior
Elenco autori:
G. Cora, A. Iacopetti
Link alla scheda completa:
https://air.unimi.it/handle/2434/770705
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/770705/1577096/Onthestructure_nodalset_FracBN_postprint.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0