Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

New concentration phenomena for a class of radial fully nonlinear equations

Articolo
Data di Pubblicazione:
2020
Citazione:
New concentration phenomena for a class of radial fully nonlinear equations / G. Galise, A. Iacopetti, F. Leoni, F. Pacella. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 37:5(2020 Oct), pp. 1109-1141. [10.1016/j.anihpc.2020.03.003]
Abstract:
We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci’s operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonex- istence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Fully nonlinear equations, Concentration phenomena, Critical Exponents; Fully nonlinear Dirichlet problems; Radial solutions; Sign-changing solutions; Asymptotic analysis;
Elenco autori:
G. Galise, A. Iacopetti, F. Leoni, F. Pacella
Link alla scheda completa:
https://air.unimi.it/handle/2434/770354
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/770354/1576290/NewConcentrationPhenomena_postprint.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0