Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

HMMs for Anomaly Detection in Autonomous Robots

Contributo in Atti di convegno
Data di Pubblicazione:
2020
Citazione:
HMMs for Anomaly Detection in Autonomous Robots / D. Azzalini, A. Castellini, M. Luperto, A. Farinelli, F. Amigoni (AAMAS CONFERENCE PROCEEDINGS). - In: AAMAS '20[s.l] : ACM, 2020. - ISBN 9781450375184. - pp. 105-113 (( Intervento presentato al 19. convegno International Conference on Autonomous Agents and MultiAgent Systems tenutosi a Auckland nel 2020.
Abstract:
Detection of anomalies and faults is a key element for long-term robot autonomy, because, together with subsequent diagnosis and recovery, allows to reach the required levels of robustness and persistency. In this paper, we propose an approach for detecting anomalous behaviors in autonomous robots starting from data collected during their routine operations. The main idea is to model the nominal (expected) behavior of a robot system using Hidden Markov Models (HMMs) and to evaluate how far the observed behavior is from the nominal one using variants of the Hellinger distance adopted for our purposes. We present a method for online anomaly detection that computes the Hellinger distance between the probability distribution of observations made in a sliding window and the corresponding nominal emission probability distribution. We also present a method for o!ine anomaly detection that computes a variant of the Hellinger distance between two HMMs representing nominal and observed behaviors. The use of the Hellinger distance positively impacts on both detection performance and interpretability of detected anomalies, as shown by results of experiments performed in two real-world application domains, namely, water monitoring with aquatic drones and socially assistive robots for elders living at home. In particular, our approach improves by 6% the area under the ROC curve of standard online anomaly detection methods. The capabilities of our o!ine method to discriminate anomalous behaviors in real-world applications are statistically proved.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
long-term autonomy; anomaly detection; hidden Markov models; autonomous robots
Elenco autori:
D. Azzalini, A. Castellini, M. Luperto, A. Farinelli, F. Amigoni
Autori di Ateneo:
LUPERTO MATTEO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/763104
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/763104/1556916/3398761.3398779.pdf
Titolo del libro:
AAMAS '20
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0