Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Quantitative estimates for almost constant mean curvature hypersurfaces

Articolo
Data di Pubblicazione:
2021
Citazione:
Quantitative estimates for almost constant mean curvature hypersurfaces / G. Ciraolo. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 14:1(2021), pp. 137-150.
Abstract:
Alexandrov’s soap bubble theorem asserts that spheres are the only connected closed embedded hypersurfaces in the Euclidean space with constant mean curvature. The theorem can be extended to space forms and it holds for more general functions of the principal curvatures. In this short review, we discuss quantitative stability results regarding Alexandrov’s theorem which have been obtained by the author in recent years. In particular, we consider hypersurfaces having mean curvature close to a constant and we quantitatively describe the proximity to a single sphere or to a collection of tangent spheres in terms of the oscillation of the mean curvature. Moreover, we also consider the problem in a non local setting, and we show that the non local effect gives a stronger rigidity to the problem and prevents the appearance of bubbling.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Alexandrov Soap Bubble Theorem; Rigidity; Stability; Mean curvature; Moving planes; Quantitative estimates
Elenco autori:
G. Ciraolo
Autori di Ateneo:
CIRAOLO GIULIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/761257
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/761257/1551031/BUMI_Ciraolo.pdf
https://air.unimi.it/retrieve/handle/2434/761257/1807927/Ciraolo2021_Article_QuantitativeEstimatesForAlmost.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0