Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the classification of Schreier extensions of monoids with non-abelian kernel

Articolo
Data di Pubblicazione:
2020
Citazione:
On the classification of Schreier extensions of monoids with non-abelian kernel / N. Martins-Ferreira, A. Montoli, A. Patchkoria, M. Sobral. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - 32:3(2020), pp. 607-623. [10.1515/forum-2019-0164]
Abstract:
We show that any regular (right) Schreier extension of a monoid M by a monoid A induces an abstract kernel φ: M → End ⁡ (A) Inn ⁡ (A) Phicolon Mtofrac operatorname End (A) operatorname Inn (A) . If an abstract kernel factors through SEnd ⁡ (A) Inn ⁡ (A) frac operatorname SEnd (A) operatorname Inn (A) , where SEnd ⁡ (A) operatorname SEnd (A) is the monoid of surjective endomorphisms of A, then we associate to it an obstruction, which is an element of the third cohomology group of M with coefficients in the abelian group U ⁢ (Z ⁢ (A)) U(Z(A)) of invertible elements of the center Z ⁢ (A) Z(A) of A, on which M acts via φ. An abstract kernel φ: M → SEnd ⁡ (A) Inn ⁡ (A) Phicolon Mtofrac operatorname SEnd (A) operatorname Inn (A) (resp. φ: M → Aut ⁡ (A) Inn ⁡ (A) Phicolon Mtofrac operatorname Aut (A) operatorname Inn (A) ) is induced by a regular weakly homogeneous (resp. homogeneous) Schreier extension of M by A if and only if its obstruction is zero. We also show that the set of isomorphism classes of regular weakly homogeneous (resp. homogeneous) Schreier extensions inducing a given abstract kernel φ: M → SEnd ⁡ (A) Inn ⁡ (A) Phicolon Mtofrac operatorname SEnd (A) operatorname Inn (A) (resp. φ: M → Aut ⁡ (A) Inn ⁡ (A) Phicolon Mtofrac operatorname Aut (A) operatorname Inn (A) ), when it is not empty, is in bijection with the second cohomology group of M with coefficients in U ⁢ (Z ⁢ (A)) U(Z(A)) .
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Eilenberg-Mac Lane cohomology of monoids; Monoid; obstruction; Schreier extension
Elenco autori:
N. Martins-Ferreira, A. Montoli, A. Patchkoria, M. Sobral
Autori di Ateneo:
MONTOLI ANDREA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/757227
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/757227/1540316/non%20ab%20monoid%20ext%20revised.pdf
https://air.unimi.it/retrieve/handle/2434/757227/1937807/10.1515_forum-2019-0164.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/02 - Algebra
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0