Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Random geometric graphs in high dimension

Articolo
Data di Pubblicazione:
2020
Citazione:
Random geometric graphs in high dimension / V. Erba, S. Ariosto, M. Gherardi, P. Rotondo. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 102:1(2020), pp. 012306.1-012306.7. [10.1103/PhysRevE.102.012306]
Abstract:
Many machine learning algorithms used for dimensional reduction and manifold learning leverage on the computation of the nearest neighbors to each point of a data set to perform their tasks. These proximity relations define a so-called geometric graph, where two nodes are linked if they are sufficiently close to each other. Random geometric graphs, where the positions of nodes are randomly generated in a subset of R-d , offer a null model to study typical properties of data sets and of machine learning algorithms. Up to now, most of the literature focused on the characterization of low-dimensional random geometric graphs whereas typical data sets of interest in machine learning live in high-dimensional spaces (d >> 10(2)). In this work, we consider the infinite dimensions limit of hard and soft random geometric graphs and we show how to compute the average number of subgraphs of given finite size k , e.g., the average number of k cliques. This analysis highlights that local observables display different behaviors depending on the chosen ensemble: soft random geometric graphs with continuous activation functions converge to the naive infinite-dimensional limit provided by Erdos-Renyi graphs, whereas hard random geometric graphs can show systematic deviations from it. We present numerical evidence that our analytical results, exact in infinite dimensions, provide a good approximation also for dimension d greater than or similar to 10.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
V. Erba, S. Ariosto, M. Gherardi, P. Rotondo
Autori di Ateneo:
GHERARDI MARCO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/783618
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0