Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Principal eigenvalues for k-Hessian operators by maximum principle methods

Articolo
Data di Pubblicazione:
2021
Citazione:
Principal eigenvalues for k-Hessian operators by maximum principle methods / I. Birindelli, K.R. Payne. - In: MATHEMATICS IN ENGINEERING. - ISSN 2640-3501. - 3:3(2021), pp. 1-37. [Epub ahead of print]
Abstract:
For fully nonlinear k-Hessian operators on bounded strictly (k-1)-convex domains Omega of N-domennsional Euclidian space, a characterization of the principal eigenvalue associated to a k-convex and negative principal eigenfunction will be given as the supremum over values of a spectral parameter for which {em admissible viscosity supersolutions} obey a minimum principle. The admissibility condition is phrased in terms of the natural closed convex cone (in the sèace of symmetric NxN matrices) which is an elliptic set in the sense of Krylov (Trans. AMS, 1995) which corresponds to using k-convex functions as admissibility constraints in the formulation of viscosity subsolutions and supersolutions. Moreover, the associated principal eigenfunction is constructed by an iterative viscosity solution technique, which exploits a compactness property which results from the establishment of a global Hoelder estimate for the unique k-convex solutions of the approximating equations.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
maximum principles, comparison principles, principal eigenvalues, k-Hessian operators, k-convex functions, admissible viscosity solutions, elliptic sets
Elenco autori:
I. Birindelli, K.R. Payne
Autori di Ateneo:
PAYNE KEVIN RAY ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/752102
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/752102/1525004/mine-03-03-021.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0