Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

libGroomRL: Reinforcement Learning for Jets

Articolo
Data di Pubblicazione:
2019
Citazione:
libGroomRL: Reinforcement Learning for Jets / S. Carrazza, F.A. Dreyer. - (2019 Sep 15). ((Intervento presentato al convegno ICML tenutosi a Long Beach nel 2019.
Abstract:
In these proceedings, we present a library allowing for straightforward calls in C++ to jet grooming algorithms trained with deep reinforcement learning. The RL agent is trained with a reward function constructed to optimize the groomed jet properties, using both signal and background samples in a simultaneous multi-level training. We show that the grooming algorithm derived from the deep RL agent can match state-of-the-art techniques used at the Large Hadron Collider, resulting in improved mass resolution for boosted objects. Given a suitable reward function, the agent learns how to train a policy which optimally removes soft wide-angle radiation, allowing for a modular grooming technique that can be applied in a wide range of contexts. The neural network trained with GroomRL can be used in a FastJet analysis through the libGroomRL C++ library.
Tipologia IRIS:
24 - Pre-print
Elenco autori:
S. Carrazza, F.A. Dreyer
Autori di Ateneo:
CARRAZZA STEFANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/735866
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/735866/1475955/1910.00410.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0