Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Stability and convergence of high-order Isogeometric discretizations for acoustic wave problems

Altro Prodotto di Ricerca
Data di Pubblicazione:
2019
Citazione:
Stability and convergence of high-order Isogeometric discretizations for acoustic wave problems / E. Zampieri, L.F. Pavarino. ((Intervento presentato al 7. convegno International Conference on Isogeometric Analysis- IGA tenutosi a Munich nel 2019.
Abstract:
In the last decades, an increasing number of works focused on the simulation of acoustic waves propagation in geophysics in order to improve the low-order accuracy of finite difference or finite element methods. Here we extend our previous works on high order approximations based on spectral and spectral element methods to Isogeometric (IGA) discretizations. In particular, we consider the numerical approximation of 2D acoustic wave problems by Isogeometric methods in space and Newmark’s finite difference schemes in time. We investigate the stability with respect to h- and p- refinements for acoustic wave problems with fully absorbing boundary conditions on the whole boundary, a useful mathematical representation aimed at reducing reflections when truncating the original unbounded domain with a finite one. We present several numerical experiments on the stability and convergence of Newmark schemes considering Cartesian and curvilinear domains, for both standard test solutions and Ricker wavelets, with respect to the numerical parameters, namely the local polynomial degree p, regularity k, mesh size h of the NURBS basis functions and the time step size t of the Newmark scheme.
Tipologia IRIS:
14 - Intervento a convegno non pubblicato
Elenco autori:
E. Zampieri, L.F. Pavarino
Autori di Ateneo:
ZAMPIERI ELENA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/726815
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/726815/1449330/IGA2019_Abstract_Elena_Zampieri.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/08 - Analisi Numerica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0