Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Nonlocal cahn-Hilliard-Navier-Stokes systems with singular potentials

Articolo
Data di Pubblicazione:
2012
Citazione:
Nonlocal cahn-Hilliard-Navier-Stokes systems with singular potentials / S. Frigeri, M. Grasselli. - In: DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1548-159X. - 9:4(2012), pp. 273-304.
Abstract:
Here we consider a Cahn-Hilliard-Navier-Stokes system characterized by a nonlocal Cahn-Hilliard equation with a singular (e.g., logarithmic) potential. This system originates from a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids. We have already analyzed the case of smooth potentials with arbitrary polynomial growth. Here, taking advantage of the previous results, we study this more challenging (and physically relevant) case. We first establish the existence of a global weak solution with no-slip and no-flux boundary conditions. Then we prove the existence of the global attractor for the 2D generalized semiflow (in the sense of J.M. Ball). We recall that uniqueness is still an open issue even in 2D. We also obtain, as byproduct, the existence of a connected global attractor for the (convective) nonlocal Cahn-Hilliard equation. Finally, in the 3D case, we establish the existence of a trajectory attractor (in the sense of V.V. Chepyzhov and M.I. Vishik).
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Navier-Stokes equations; nonlocal Cahn-Hilliard equations; singular potentials; incompressible binary fluids; global attractors; trajectory attractors
Elenco autori:
S. Frigeri, M. Grasselli
Link alla scheda completa:
https://air.unimi.it/handle/2434/724676
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/724676/1444157/FG2-Dyn-PDE.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0