Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Strong solutions for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems

Articolo
Data di Pubblicazione:
2013
Citazione:
Strong solutions for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems / S. Frigeri, M. Grasselli, P. Krejci. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 255:9(2013), pp. 2587-2614.
Abstract:
A well-known diffuse interface model for incompressible isothermal mixtures of two immiscible fluids consists of the Navier-Stokes system coupled with a convective Cahn-Hilliard equation. In some recent contributions the standard Cahn-Hilliard equation has been replaced by its nonlocal version. The corresponding system is physically more relevant and mathematically more challenging. Indeed, the only known results are essentially the existence of a global weak solution and the existence of a suitable notion of global attractor for the corresponding dynamical system defined without uniqueness. In fact, even in the two-dimensional case, uniqueness of weak solutions is still an open problem. Here we take a step forward in the case of regular potentials. First we prove the existence of a (unique) strong solution in two dimensions. Then we show that any weak solution regularizes in finite time uniformly with respect to bounded sets of initial data. This result allows us to deduce that the global attractor is the union of all the bounded complete trajectories which are strong solutions. We also demonstrate that each trajectory converges to a single equilibrium, provided that the potential is real analytic and the external forces vanish.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Navier-Stokes equations; Non local Cahn-Hilliard equations; Strong solutions; Global attractors; Convergence to equilibrium; Lojasiewicz-Simon inequality
Elenco autori:
S. Frigeri, M. Grasselli, P. Krejci
Link alla scheda completa:
https://air.unimi.it/handle/2434/724664
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/724664/1444142/FGK-final.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0