Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Generalization from correlated sets of patterns in the perceptron

Articolo
Data di Pubblicazione:
2019
Citazione:
Generalization from correlated sets of patterns in the perceptron / F. Borra, M. Cosentino Lagomarsino, P. Rotondo, M. Gherardi. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 52:38(2019 Sep), pp. 384004.1-384004.19. [10.1088/1751-8121/ab3709]
Abstract:
Generalization is a central aspect of learning theory. Here, we propose a framework that explores an auxiliary task-dependent notion of generalization, and attempts to quantitatively answer the following question: given two sets of patterns with a given degree of dissimilarity, how easily will a network be able to 'unify' their interpretation? This is quantified by the volume of the configurations of synaptic weights that classify the two sets in a similar manner. To show the applicability of our idea in a concrete setting, we compute this quantity for the perceptron, a simple binary classifier, using the classical statistical physics approach in the replica-symmetric ansatz. In this case, we show how an analytical expression measures the 'distance-based capacity', the maximum load of patterns sustainable by the network, at fixed dissimilarity between patterns and fixed allowed number of errors. This curve indicates that generalization is possible at any distance, but with decreasing capacity. We propose that a distance-based definition of generalization may be useful in numerical experiments with real-world neural networks, and to explore computationally sub-dominant sets of synaptic solutions.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
artificial neural networks; disordered systems; statistical mechanics
Elenco autori:
F. Borra, M. Cosentino Lagomarsino, P. Rotondo, M. Gherardi
Autori di Ateneo:
COSENTINO LAGOMARSINO MARCO ( autore )
GHERARDI MARCO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/724351
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0