Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Free Heyting algebra endomorphisms: Ruitenburg’s Theorem and beyond

Articolo
Data di Pubblicazione:
2020
Citazione:
Free Heyting algebra endomorphisms: Ruitenburg’s Theorem and beyond / S. Ghilardi, L. Santocanale. - In: MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE. - ISSN 0960-1295. - (2020). [Epub ahead of print] [10.1017/S0960129519000203]
Abstract:
Ruitenburg’s Theorem says that every endomorphism f of a finitely generated free Heyting algebra is ulti- mately periodic if f fixes all the generators but one. More precisely, there is N ≥ 0 such that f^N+2 = f^N , thus the period equals 2. We give a semantic proof of this theorem, using duality techniques and bounded bisimulation ranks. By the same techniques, we tackle investigation of arbitrary endomorphisms of free algebras. We show that they are not, in general, ultimately periodic. Yet, when they are (e.g. in the case of locally finite subvarieties), the period can be explicitly bounded as function of the cardinality of the set of generators.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Heyting algebra; Ruitenburg’s Theorem; Sheaf Duality; Bounded Bisimulations; Free algebra endomorphisms
Elenco autori:
S. Ghilardi, L. Santocanale
Autori di Ateneo:
GHILARDI SILVIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/706157
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/706157/1433715/1901.01252.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/01 - Logica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0