Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Strategies for comparing gene expression profiles from different microarray platforms: Application to a case-control experiment

Articolo
Data di Pubblicazione:
2006
Citazione:
Strategies for comparing gene expression profiles from different microarray platforms: Application to a case-control experiment / M. Severgnini, S. Bicciato, E. Mangano, F. Scarlatti, A. Mezzelani, M. Mattioli, R. Ghidoni, C. Peano, R. Bonnal, F. Viti, L. Milanesi, G. De Bellis, C. Battaglia. - In: ANALYTICAL BIOCHEMISTRY. - ISSN 0003-2697. - 353:1(2006), pp. 43-56.
Abstract:
Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
microarray, resveratrol, breast cancer,gene profiling,
Elenco autori:
M. Severgnini, S. Bicciato, E. Mangano, F. Scarlatti, A. Mezzelani, M. Mattioli, R. Ghidoni, C. Peano, R. Bonnal, F. Viti, L. Milanesi, G. De Bellis, C. Battaglia
Autori di Ateneo:
BATTAGLIA CRISTINA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/13988
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIO/10 - Biochimica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0