Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Lagrangian Grassmannians and Spinor Varieties in Characteristic Two

Articolo
Data di Pubblicazione:
2019
Citazione:
Lagrangian Grassmannians and Spinor Varieties in Characteristic Two / B. van Geemen, A. Marrani. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - 15(2019). [10.3842/SIGMA.2019.064]
Abstract:
The vector space of symmetric matrices of size n has a natural map to a projective space of dimension 2(n) - 1 given by the principal minors. This map extends to the Lagrangian Grassmannian LG(n, 2n) and over the complex numbers the image is de fined, as a set, by quartic equations. In case the characteristic of the field is two, it was observed that, for n = 3, 4, the image is defined by quadrics. In this paper we show that this is the case for any n and that moreover the image is the spinor variety associated to Spin(2n + 1). Since some of the motivating examples are of interest in supergravity and in the black-hole/qubit correspondence, we conclude with a brief examination of other cases related to integral Freudenthal triple systems over integral cubic Jordan algebras.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Lagrangian Grassmannian; spinor variety; characteristic two; Freudenthal triple system
Elenco autori:
B. van Geemen, A. Marrani
Autori di Ateneo:
VAN GEEMEN LAMBERTUS ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/678494
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/678494/1315579/LagrGrass_sigma19.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0