Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A note on Serrin’s overdetermined problem

Articolo
Data di Pubblicazione:
2014
Citazione:
A note on Serrin’s overdetermined problem / G. Ciraolo, R. Magnanini. - In: KODAI MATHEMATICAL JOURNAL. - ISSN 0386-5991. - 37:3(2014), pp. 728-736. [10.2996/kmj/1414674618]
Abstract:
We consider the solution of the torsion problem -Delta u = N in Omega, u = 0 on partial derivative Omega, where Omega is a bounded domain in R-N. Serrin's celebrated symmetry theorem states that, if the normal derivative u(v) is constant on partial derivative Omega, then Omega must be a ball. In [6], it has been conjectured that Serrin's theorem may be obtained by stability in the following way: first, for the solution u of the torsion problem prove the estimate r(e) - r(i) <= Ct (max(Gamma i) u - min(Gamma i) u) for some constant C-t depending on t, where r(e) and r(i) are the radii of an annulus containing partial derivative Omega and Gamma i is a surface parallel to partial derivative Omega at distance t and sufficiently close to partial derivative Omega; secondly, if in addition u(v) is constant on partial derivative Omega, show that max(Gamma i) u - min(Gamma i) u = o(C-t) as t -> 0(+). The estimate constructed in [6] is not sharp enough to achieve this goal. In this paper, we analyse a simple case study and show that the scheme is successful if the admissible domains Omega are ellipses.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Serrin’s problem; Parallel surfaces; overdetermined problems; method of moving planes; stability.
Elenco autori:
G. Ciraolo, R. Magnanini
Autori di Ateneo:
CIRAOLO GIULIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/675152
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0