Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A sharp quantitative version of Alexandrov's theorem via the method of moving planes

Articolo
Data di Pubblicazione:
2018
Citazione:
A sharp quantitative version of Alexandrov's theorem via the method of moving planes / G. Ciraolo, L. Vezzoni. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - 20:2(2018), pp. 261-299. [10.4171/JEMS/766]
Abstract:
We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let S be a C-2 closed embedded hypersurface of Rn+1, n >= 1, and denote by osc (H) the oscillation of its mean curvature. We prove that there exists a positive epsilon, depending on n and upper bounds on the area and the C-2-regularity of S, such that if osc (H) <= epsilon then there exist two concentric balls B-ri and B-re such that S subset of (B) over bar (re) B-ri and r(e) - r(i) <= C osc (H), with C depending only on n and upper bounds on the surface area of S and the C-2-regularity of S. Our approach is based on a quantitative study of the method of moving planes, and the quantitative estimate on r(e) - r(i) we obtain is optimal. As a consequence, we also prove that if osc (H) is small then S is diffeomorphic to a sphere, and give a quantitative bound which implies that S is C-1-close to a sphere.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Alexandrov Soap Bubble Theorem; method of moving planes; stability; mean curvature; pinching
Elenco autori:
G. Ciraolo, L. Vezzoni
Autori di Ateneo:
CIRAOLO GIULIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/675071
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/675071/1306687/1501.07845.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0