Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A spectral approach to a constrained optimization problem for the Helmholtz equation in unbounded domains

Articolo
Data di Pubblicazione:
2015
Citazione:
A spectral approach to a constrained optimization problem for the Helmholtz equation in unbounded domains / G. Ciraolo, F. Gargano, V. Sciacca. - In: COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0101-8205. - 34:3(2015), pp. 1035-1055.
Abstract:
We study some convergence issues for a recent approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains (Ciraolo et al. in J Comput Phys 246:78–95, 2013) where the index of refraction is not required to be constant at infinity. The approach is based on the minimization of an integral functional, which arises from an integral formulation of the radiation condition at infinity. In this paper, we implement a Fourier–Chebyshev collocation method to study some convergence properties of the numerical algorithm; in particular, we give numerical evidence of some convergence estimates available in the literature (Ciraolo in Helmholtz equation in unbounded domains: some convergence results for a constrained optimization problem, 2013) and study numerically the minimization problem at low and mid-high frequencies. Numerical examples in some relevant cases are also shown.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Helmholtz equation; Transparent boundary conditions; Minimization of integral functionals; Spectral methods
Elenco autori:
G. Ciraolo, F. Gargano, V. Sciacca
Autori di Ateneo:
CIRAOLO GIULIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/675293
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/675293/1306658/1401.5673.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0