Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

The Ellipse Law: Kirchhoff Meets Dislocations

Articolo
Data di Pubblicazione:
2020
Citazione:
The Ellipse Law: Kirchhoff Meets Dislocations / J.A. Carrillo, J. Mateu, M.G. Mora, L. Rondi, L. Scardia, J. Verdera. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 373:2(2020 Jan), pp. 507-524.
Abstract:
In this paper we consider a nonlocal energy I α whose kernel is obtained by adding to the Coulomb potential an anisotropic term weighted by a parameter α∈ R. The case α = 0 corresponds to purely logarithmic interactions, minimised by the circle law; α = 1 corresponds to the energy of interacting dislocations, minimised by the semi-circle law. We show that for α∈ (0 , 1) the minimiser is the normalised characteristic function of the domain enclosed by the ellipse of semi-axes 1-α and 1+α. This result is one of the very few examples where the minimiser of a nonlocal anisotropic energy is explicitly computed. For the proof we borrow techniques from fluid dynamics, in particular those related to Kirchhoff’s celebrated result that domains enclosed by ellipses are rotating vortex patches, called Kirchhoff ellipses.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
nonlocal interaction energy, anisotropic energy, dislocations
Elenco autori:
J.A. Carrillo, J. Mateu, M.G. Mora, L. Rondi, L. Scardia, J. Verdera
Link alla scheda completa:
https://air.unimi.it/handle/2434/659266
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/659266/1265387/CMP-prep-pp.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0