Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Increased biosynthesis of glycosphingolipids in CDG-Ia fibroblasts

Articolo
Data di Pubblicazione:
2002
Citazione:
Increased biosynthesis of glycosphingolipids in CDG-Ia fibroblasts / G. Sala, T. Dupre, N. Seta, P. Codogno, R. Ghidoni. - In: PEDIATRIC RESEARCH. - ISSN 0031-3998. - 52:5(2002), pp. 645-651.
Abstract:
Congenital disorder of glycosylation Ia (CDG-Ia) is an autosomal recessive disease, characterized by the impaired biosynthesis of the N-linked oligosaccharide chains of proteins due to a deficiency of phosphomannomutase (PMM), the enzyme converting mannose-6-phosphate into mannose-1-phosphate. We investigated the consequences of the altered N-linked glycoprotein (GP) biosynthesis on the quantity and quality of glycosphingolipids (GSLs) in fibroblasts of CDG-Ia patients. First, we found that CDG-Ia fibroblasts contain an increased amount of total GSLs when compared with normal fibroblasts. Further, we assessed by metabolic labeling of CDG-Ia fibroblasts with radioactive sugar precursors, including galactose and N-acetylmannosamine, that a diminished biosynthesis of cellular GPs is antagonized by an increased biosynthesis of GSLs. An increased GSL biosynthesis was also observed by means of radio-labeled lipid precursors including sphingosine and lactosylceramide. Notably, also the degradation of GLSs is slowed down in CDG-Ia fibroblasts. Finally, when we labeled normal human fibroblasts and CHO cells with radioactive galactose in the presence and absence of deoxymannojirimycin (dMM), an inhibitor of N-glycan processing, we found that this cellular model mimics what occurs in CDG-Ia fibroblasts. Since an inverse relationship between GP expression and GSL content does exist, we assume that increased glycosphingolipid biosynthesis is secondary to protein hypoglycosylation. Altogether, our data suggest that the cell metabolic machinery may be able to partially re-equilibrate protein hypoglycosylation with increased biosynthesis of glycosphingolipids, possibly to preserve the overall physico-chemical equilibrium of the outer layer of the plasma membrane.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
G. Sala, T. Dupre, N. Seta, P. Codogno, R. Ghidoni
Link alla scheda completa:
https://air.unimi.it/handle/2434/29453
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIO/10 - Biochimica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0