Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Effective nonvanishing for fano weighted complete intersections

Articolo
Data di Pubblicazione:
2017
Citazione:
Effective nonvanishing for fano weighted complete intersections / M. Pizzato, T. Sano, L. Tasin. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 11:10(2017), pp. 2369-2395.
Abstract:
We show that the Ambro–Kawamata nonvanishing conjecture holds true for a quasismooth WCI X which is Fano or Calabi–Yau, i.e., we prove that, if H is an ample Cartier divisor on X, then |H| is not empty. If X is smooth, we further show that the general element of |H| is smooth. We then verify the Ambro– Kawamata conjecture for any quasismooth weighted hypersurface. We also verify Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface. For the proofs, we introduce the arithmetic notion of regular pairs and highlight some interesting connections with the Frobenius coin problem.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Ambro–Kawamata conjecture; Nonvanishing; Weighted complete intersections; Algebra and Number Theory
Elenco autori:
M. Pizzato, T. Sano, L. Tasin
Autori di Ateneo:
TASIN LUCA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/638204
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0