Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

BeautyNet: Joint multiscale CNN and transfer learning method for unconstrained facial beauty prediction

Articolo
Data di Pubblicazione:
2019
Citazione:
BeautyNet: Joint multiscale CNN and transfer learning method for unconstrained facial beauty prediction / Y. Zhai, H. Cao, W. Deng, J. Gan, V. Piuri, J. Zeng. - In: COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE. - ISSN 1687-5265. - 2019(2019), pp. 1910624.1-1910624.14.
Abstract:
Because of the lack of discriminative face representations and scarcity of labeled training data, facial beauty prediction (FBP), which aims at assessing facial attractiveness automatically, has become a challenging pattern recognition problem. Inspired by recent promising work on fine-grained image classification using the multiscale architecture to extend the diversity of deep features, BeautyNet for unconstrained facial beauty prediction is proposed in this paper. Firstly, a multiscale network is adopted to improve the discriminative of face features. Secondly, to alleviate the computational burden of the multiscale architecture, MFM (max-feature-map) is utilized as an activation function which can not only lighten the network and speed network convergence but also benefit the performance. Finally, transfer learning strategy is introduced here to mitigate the overfitting phenomenon which is caused by the scarcity of labeled facial beauty samples and improves the proposed BeautyNet's performance. Extensive experiments performed on LSFBD demonstrate that the proposed scheme outperforms the state-of-the-art methods, which can achieve 67.48% classification accuracy.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Computer Science (all); Neuroscience (all); Mathematics (all)
Elenco autori:
Y. Zhai, H. Cao, W. Deng, J. Gan, V. Piuri, J. Zeng
Autori di Ateneo:
PIURI VINCENZO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/634215
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/634215/1194934/1910624.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0