Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Explicit second order isogeometric discretizations for acoustic wave problems

Articolo
Data di Pubblicazione:
2019
Citazione:
Explicit second order isogeometric discretizations for acoustic wave problems / E. Zampieri, L.F. Pavarino. - In: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. - ISSN 0045-7825. - 348:(2019 May), pp. 776-795. [10.1016/j.cma.2019.01.046]
Abstract:
This paper presents a stability analysis of isogeometric (IGA) and explicit Newmark discretizations for acoustic wave problems with absorbing boundary conditions. In spite of the very ill-conditioned IGA mass and stiffness matrices, especially with respect to the polynomial degree p of the B-splines and Non-Uniform Rational B-Splines (NURBS) basis functions employed, the stability bounds of the proposed Newmark-IGA method depend linearly on the meshsize h of the IGA mesh and inversely on the IGA polynomial degree p. Several numerical tests in the plane confirm these stability bounds and additionally explore the Newmark-IGA order of convergence with respect to h,p,Δt, domain deformation and the absorbing boundary conditions performance in the presence of a Ricker wavelet in a NURBS domain
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Acoustic waves; Absorbing boundary conditions; Isogeometric analysis; Explicit time advancing schemes; Stability
Elenco autori:
E. Zampieri, L.F. Pavarino
Autori di Ateneo:
ZAMPIERI ELENA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/628414
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/08 - Analisi Numerica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0